Using the combined might of two of Hawaii's powerful telescopes, astronomers have captured what they are describing as "groundbreaking" sharp new images of a planetary system still in the process of being born.
They also found no evidence of three previously detected planets. The star is LkCa 15, a young, Sun-like T Tauri star 473 light-years away, and the missing planets are not a bad thing. Nor do they mean that no planets are forming.
Instead, the technique demonstrates a refinement of previous methods that could allow for more accurate detection of still-forming planets in the future - and deeper understanding of planetary formation.
We know that when stars are newly formed, they're orbited by a swirling disc of dust, rocks and gas. Planetary accretion is thought to occur when particles in the disc collide with each other, gradually growing stronger and stronger gravitationally, collecting and clearing more and more material from the orbital path, and eventually forming a planet.
Astronomers in the past have taken some pretty amazing images of these protoplanetary disks, with strong evidence of that orbital clearing.
In addition, previous teams of astronomers thought that they had detected evidence of three 'super-Jupiter' planets in orbit around LkCa 15 in just such a Solar System-sized gap, using a technique called sparse aperture masking interferometry to separate the planets' light from the light of the star.
But, using the Subaru Telescope and the WM Keck Observatory, an international team of researchers has determined that the putative planetary light was actually coming from the disc itself all along.
0 Comments